Biography

- Professor Wei Ma is the associate dean of the
 Shandong University School of Public Health, deputy
 director of the Shandong University Climate change
 and Health Center.
- He received his PhD in Epidemiology at School of Public Health, University of California, Los Angeles in 2006.
- He is also a member of the Future Earth Health
 Knowledge Action Network Steering committee.
- Prof. Ma's research interests include infectious disease epidemiology and impacts of climate change, especially the impacts of extreme weather events, on human...

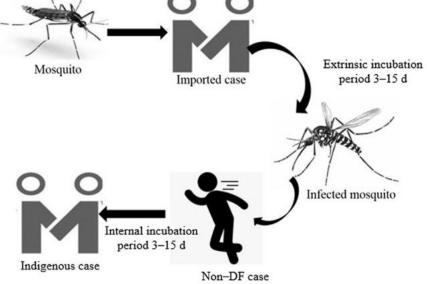
The Impact of Climate Change and Extreme Weather Events on the Risk of Dengue Fever Transmission in China

Prof. Wei Ma

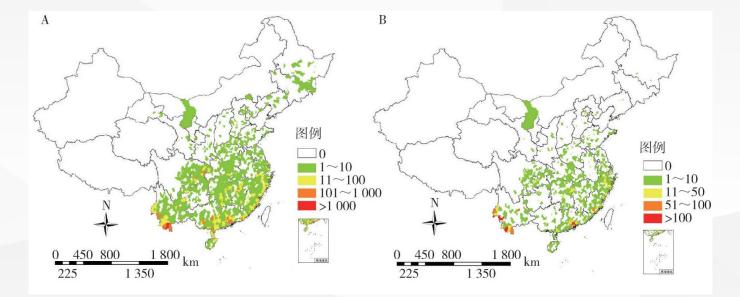
Vice Dean, School of Public Health, Shandong University Deputy Director, Shandong University Climate Change and Health Center

Background: Dengue fever

(1) Dengue fever (DF) is an infectious disease caused by four serotypes of dengue virus, mainly transmitted by Aedes albopictus and Aedes aegypti mosquitoes.


spread of dengue fever.

Aedes aegypti


(2) WHO believes that climate change is the main cause of the global

Background: Dengue fever

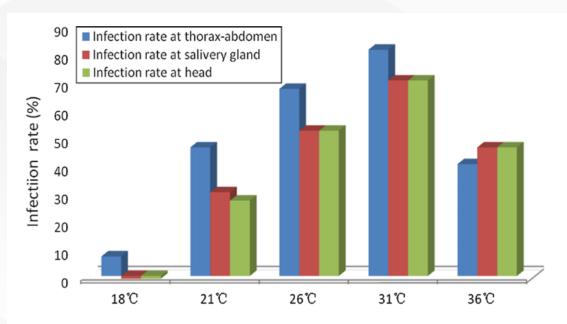
- Dengue fever is one of the most serious mosquito borne infectious diseases worldwide.
- Affected by the global dengue fever epidemic, the incidence of dengue fever in China has shown a continuous upward trend.

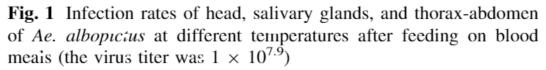
Dengue fever outbreaks in China are spreading from the southeast coastal areas to the northwest hinterland.

Figure Regional distribution of dengue reported cases in Chinese Mainland in 2019 A. Distribution of reported cases of dengue fever; B. Distribution of imported dengue fever...

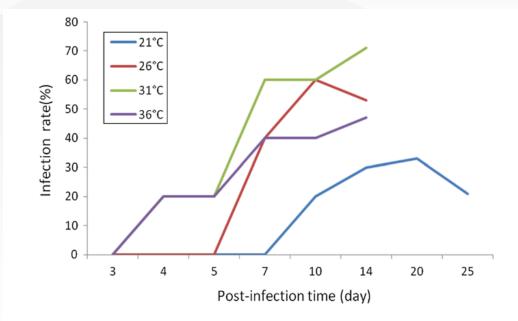
Liu et al. 2020

Background: Climate change, hydrological status, and dengue fever


- Climate change includes the long-term dynamic changes of climate elements, which will alter the current distribution patterns of temperature and precipitation.
- Climate change can also lead to frequent extreme weather events such as heatwaves, floods, and typhoons.
- Temperature, precipitation, humidity, and other factors can affect the reproduction of Aedes mosquitoes, the replication of dengue virus, and the transmission pathways and processes of dengue fever.



Background : The impact of temperature on dengue virus


Arch Virol.2014 Nov; 159(11):3053-7. doi: 10.1007/s00705-014-2051-1. Epub 2014 Jul 3.

The effect of temperature on the extrinsic incubation period and infection rate of dengue virus serotype 2 infection in Aedes albopictus

Within the temperature range of 18-31 °C, the infection rate shows an increasing trend as the temperature rises. The highest infection rate occurs at 31 °C, but the infection rate is lower at 36 °C than at 31 °C.

Fig. 3 Infection rates of *Ae. albopictus* salivary glands at different times postinfection after infectious blood meals. The mosquitoes were kept at 18, 21, 26, 31, and 36 °C, respectively

As the temperature increases, the replication rate of the virus in Aedes mosquitoes accelerates, and the time for the first detection of dengue virus antigen gradually shortens.

Background: The impact of temperature and precipitation on mosquito vectors

Vector Borne Zoonotic Dis.2011 Aug; 11(8):1181-6. doi: 10.1089/vbz.2010.0032.

Distribution of Aedes albopictus in Northwestern China

Research on Aedes albopictus shows that most confirmed areas are located in regions with annual average temperatures above 11 °C and January average temperatures above -5 °C.

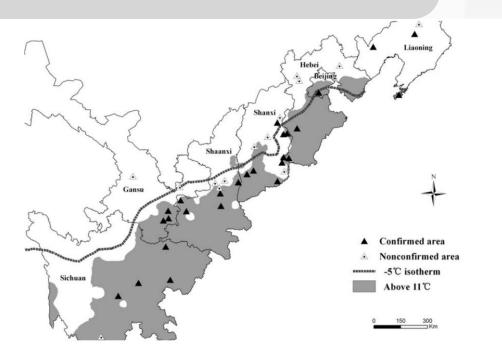


FIG. 2. Relationship between annual mean temperature and the distribution of Ae. albopictus, January mean temperature, and the distribution.

The confirmed areas of Aedes albopictus have experienced annual precipitation of over 500 millimeters, which is a typical lower limit.

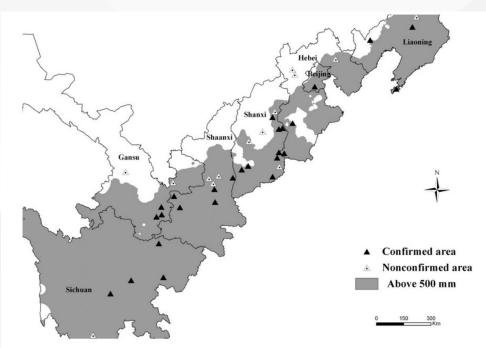
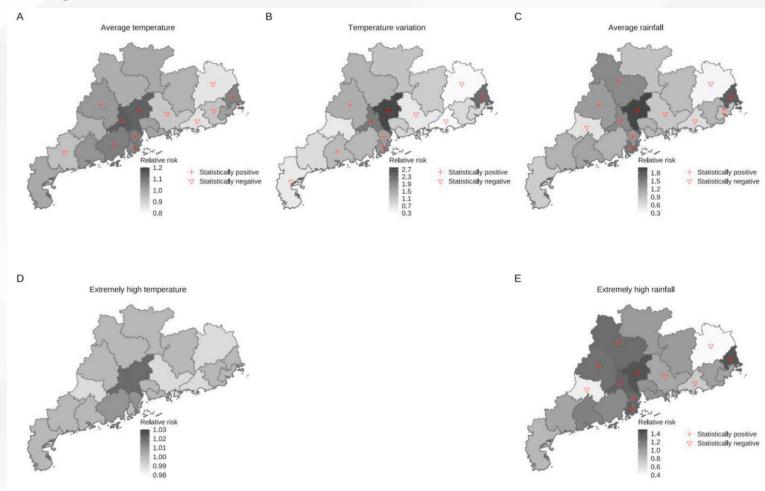



FIG. 3. Relationship between annual precipitation and the distribution of Ae. albopictus.

Background: The impact of climate factors on the incidence of dengue fever

Environ Res. 2021 May; 196:110900. doi: 10.1016/j.envres.2021.110900.

Extreme weather conditions and dengue outbreak in Guangdong, China: Spatial heterogeneity based on climate variability

In seven cities of Guangdong Province, average temperature and average rainfall are positively correlated with the incidence rate of dengue fever, while five cities are negatively correlated.

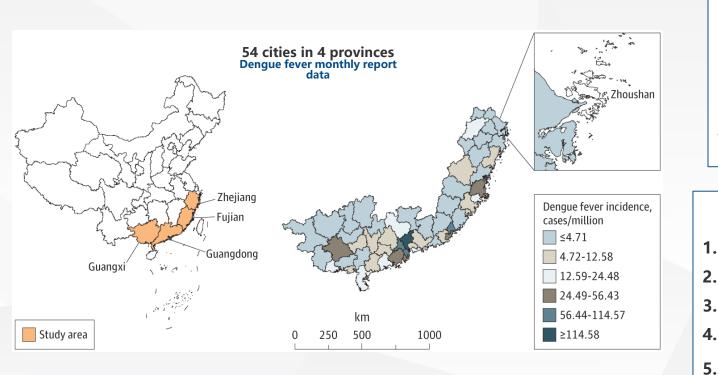
Fig. 4. Estimated associations of dengue incidence with weather conditions for each city in Guangdong province.

Background: Climate change, hydrological status, and dengue fever

The local hydrological status (changes and movements of water in nature) is closely related to factors such as temperature and precipitation, and is a potential indicator for evaluating the comprehensive impact of climate factors on dengue fever outbreaks.

- Moist state: Rich static water source provides a natural breeding ground for Aedes mosquitoes
- Drought state: increase the use of water storage containers and mosquito human contact frequency

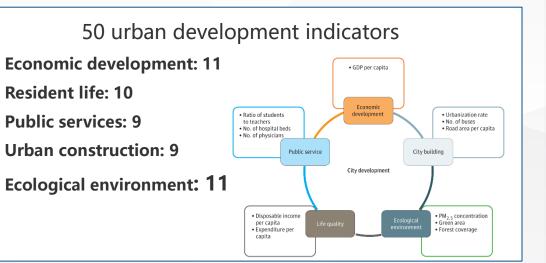
Background: Urbanization and Dengue Fever


Urban development is a multidimensional and systematic concept, which can change the correlation between climate and hydrological factors and dengue fever from different dimensions, such as:

- Insufficient urban water supply and delayed garbage recycling will promote the breeding of mosquito vectors
- High population density and mobility will increase the frequency of mosquito human contact
- Abundant medical resources can improve the prevention and control of dengue fever and emergency response capabilities for dengue fever outbreaks

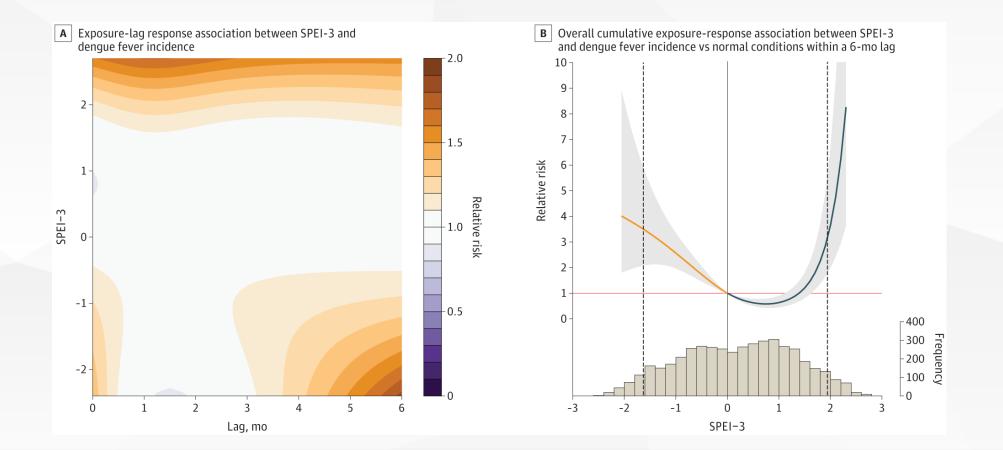
Study 1: Correlation Analysis between Climate and Hydrological Factors and Dengue Fever Transmission in China

JAMA Netw Open. 2023; 6(1):e2249440. doi:10.1001/jamanetworkopen.2022.49440


Association Between Hydrological Conditions and Dengue Fever Incidence in Coastal Southeastern China From 2013 to 2019

Climate and hydrological indicators Standardized Precipitation Evapotranspiration Index (SPEI): The cumulative frequency distribution of the difference between standardized precipitation and evapotranspiration is used to classify dry and wet levels.

SPEI>0 indicates wetness, SPEI=2 indicates extreme wetness


> SPEI<0 indicates drought, SPEI=-2 indicates extreme drought state SPEI has multi-scale characteristics. In this study, monthly SPEI-3, SPEI-6, and SPEI-12 were calculated for each city, representing the seasonal, medium-term, and...

The correlation between climatic and hydrological factors and the transmission of dengue fever in China

Spatiotemporal Bayesian Mixed Effects Model+Distributed Lag Nonlinear Model:

- ✓ Extreme humidity and extreme drought can both increase the risk of dengue fever
- ✓ Extreme humidity has the greatest effect in the first month of lag, RR=1.27 (95%CI: 1.05-1.53)
- ✓ Extreme drought exhibits a longer lag, with the greatest effect in the sixth month, RR=1.63 (95%CI: 1.29-2.05)

The modifying effect of urban features

The modifying effects of economic development, public services, and residents' living standards are similar. The higher level of development has reduced the adverse effects of extreme hydrological conditions on dengue fever incidence, especially in extreme drought conditions:

In cities with lower per capita GDP, number of doctors, and disposable income: the risk of dengue fever increases immediately under extreme drought conditions, with the greatest effect in the current month

Table. Maximum and Cumulative Relative Risk of Dengue Fever for Extreme Wet and Extreme Dry Conditions Within 6 Months by Different Scenarios of City Development Indicators

	Extreme wet conditions: SPEI-3 of 2			Extreme dry conditions: SPEI-3 of -2		
	Maximum RR and lag		- Cumulative RR	Maximum RR and lag	Maximum RR and lag	
City development indicator	RR (95% Crl)	Lag, mo	(95% Crl)	RR (95% Crl)	RR (95% Crl) Lag, mo	
GDP per capita					i	
Low	1.41 (0.95-2.11)	0	4.47 (1.84-10.87)	1.76 (1.21-2.57)	0	7.15 (2.89-17.69)
Medium	1.28 (0.95-1.74)	0	4.00 (2.08-7.71)	1.52 (1.12-2.06)	0	4.61 (2.16-9.87)
High	1.30 (1.00-1.68)	1	2.73 (1.15-6.48)	1.67 (1.21-2.30)	6	1.69 (0.53-5.36)
No. of physicians per 10 000 people		1	I			i i
Low	1.62 (1.07-2.44)	0	5.56 (2.19-14.11)	2.04 (1.40-2.98)	0	11.81 (5.16-27.03)
Medium	1.38 (1.00-1.89)	0	4.29 (2.14-8.58)	1.60 (1.18-2.16)	0	4.90 (2.28-10.53)
High	1.21 (0.99-1.48)	2	2.16 (0.97-4.82)	1.27 (0.92-1.75)	6	0.82 (0.28-2.39)
Disposable income per capita					1	
Low	1.61 (1.05-2.49)	0	5.74 (2.18-15.14)	2.27 (1.52-3.38)	0	17.10 (7.17-40.78)
Medium	1.40 (1.01-1.93)	0	4.46 (2.22-8.96)	1.74 (1.27-2.39)	0	5.83 (2.73-12.44)
High	1.24 (0.97-1.58)	1	2.31 (1.02-5.24)	1.25 (0.92-1.70)	6	0.65 (0.23-1.89)

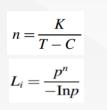
The modifying effect of urban features

- ✓ In terms of ecological environment, after 3-6 months of extreme drought, cities with larger per capita green areas have a significantly increased risk of dengue fever
- The urbanization rate has a positive modifying effect on extreme humidity and a negative modifying effect on extreme drought.

Table. Maximum and Cumulative Re of City Development Indicators	lative Risk of Dengue Fever for	Extreme Wet	and Extreme Dry Conc	litions Within 6 Months b	y Different Sce	enarios — — — — — — — — I	
	Extreme wet conditions: SPEI-3 of 2			Extreme dry conditions: SPEI-3 of -2			
	Maximum RR and lag		Cumulative RR	Maximum RR and lag		Cumulative RR	
City development indicator	RR (95% Crl)	Lag, mo	(95% Crl)	RR (95% Crl)	Lag, mo	(95% Crl)	
Green area per 10 000 people							
Low	1.27 (1.00-1.61)	1	2.91 (1.43-5.90)	1.46 (1.11-1.91)	6	2.16 (0.91-5.10)	
Medium	1.27 (1.02-1.59)	1	3.15 (1.64-6.07)	1.52 (1.18-1.96)	6	2.65 (1.19-5.90)	
High	1.31 (0.94-1.81)	0	4.92 (2.20-10.98)	1.84 (1.37-2.46)	6	9.08 (3.17-26.00)	
Urbanization rate							
Low	1.30 (0.94-1.80)	2	1.65 (0.57-4.73)	1.70 (1.11-2.60)	0	5.74 (2.36-13.98)	
Medium	1.29 (1.03-1.63)	1	2.90 (1.51-5.58)	1.51 (1.09-2.08)	0	3.92 (1.81-8.49)	
High	1.80 (1.26-2.56)	6	6.67 (2.16-20.62)	1.57 (1.13-2.16)	6	1.97 (0.69-5.60)	

Lancet Planet Health. 2023 May; 7(5):e397-e406. doi: 10.1016/S2542-5196(23)00051-7.

Projecting future risk of dengue related to hydrometeorological conditions in mainland China under climate change scenarios: a modelling study


- ✓ Database: Dengue fever case data from 70 cities in China from 2013 to 2019
- Method: Ross Macdonald model (ecology)+spatiotemporal Bayesian mixed effects model (spatial epidemiology)

Simultaneously considering the impact of climate change on the active distribution of dengue virus and Aedes mosquitoes, as well as the correlation between climate and hydrological factors and dengue fever incidence

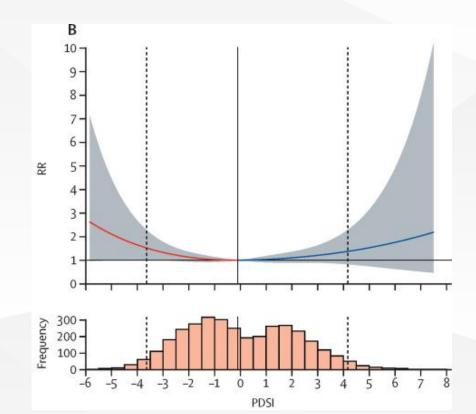
✓ Climate change scenario: RCP2.6、 4.5 and 8.5

Ross Macdonald Model (Ecology)

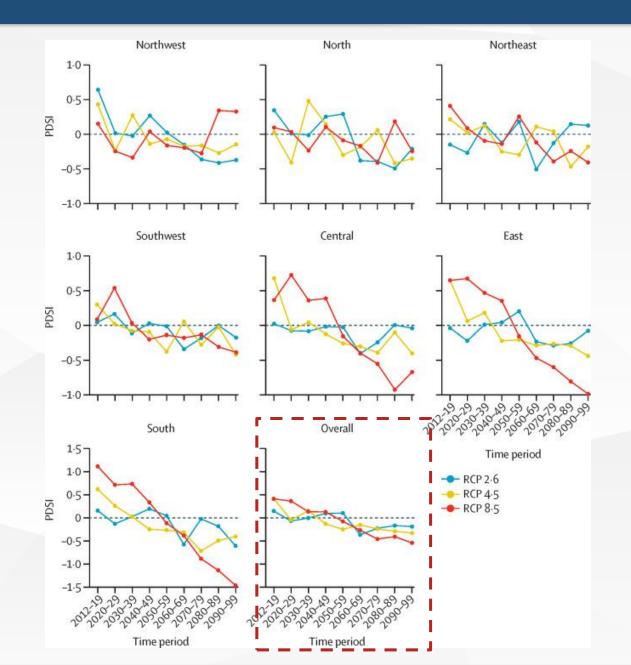
- The impact of climate on the survival and reproduction of mosquito vectors
- The impact of climate on the developmental cycle of dengue virus in mosquito vectors

0.1.0		
	其中,	
	n:外潜伏期	
	K:登革病毒在蚊媒体内正常发育所需的最低积温,为165.2℃·G	k
	C:登革病毒在蚊媒体内正常发育所需的最低温度,为11.9℃	
	T:环境温度	
	Li: 感染性寿命	
	p: 日存活率	

当Li=1, p=91%时, T=18.5℃



PTI>1

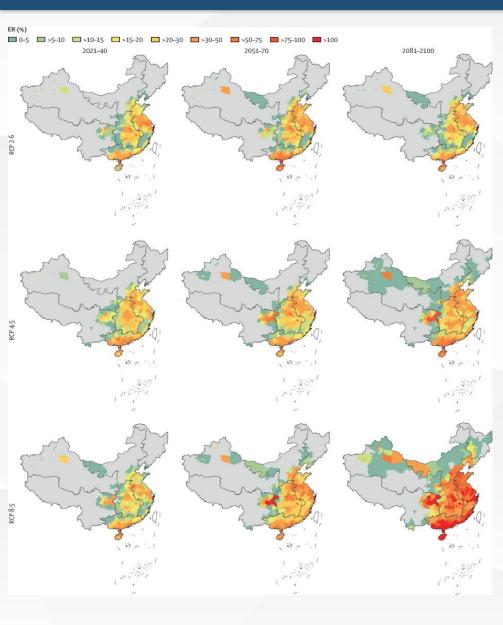

 \checkmark

Spatiotemporal Bayesian Mixed Effects Model (Spatial Epidemiology)

 Dose response relationship between PDSI (Palmer Drought Index) and dengue fever incidence

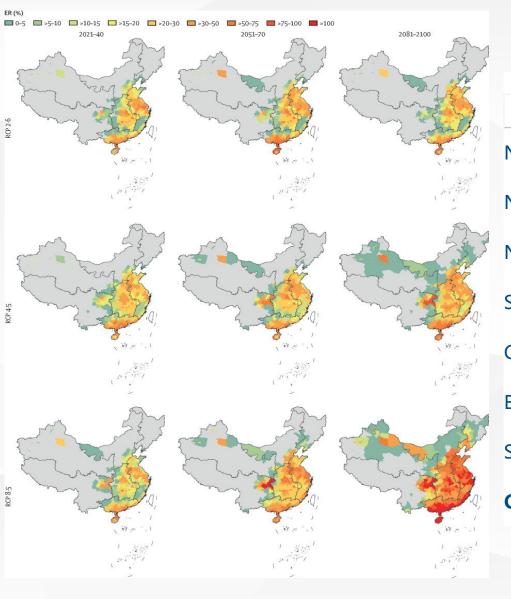
Trends of PDSI changes in China under different RCP scenarios

Distribution of active risk areas for dengue virus and Aedes mosquitoes...

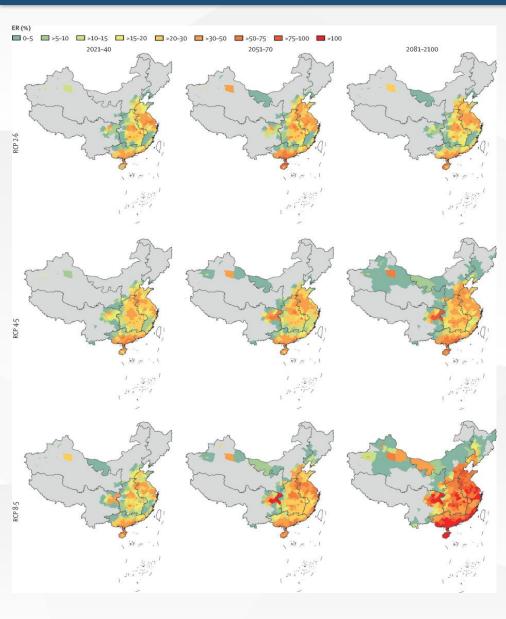

The exposure risks are highest in South China, East China, and Central China regions

Hainan, Guangxi, and Guangdong have the longest duration of exposure risk (>4 months per year)

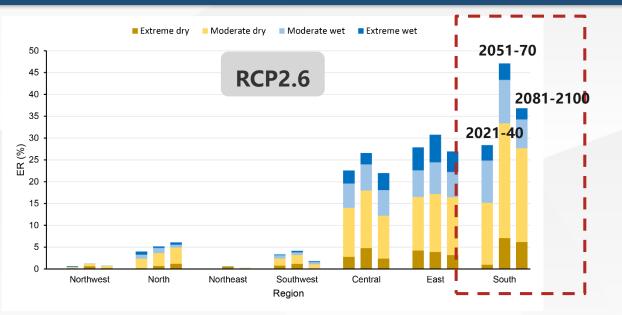
In the RCP8.5 scenario, there is a clear northward trend in the distribution of dengue virus and Aedes mosquitoes

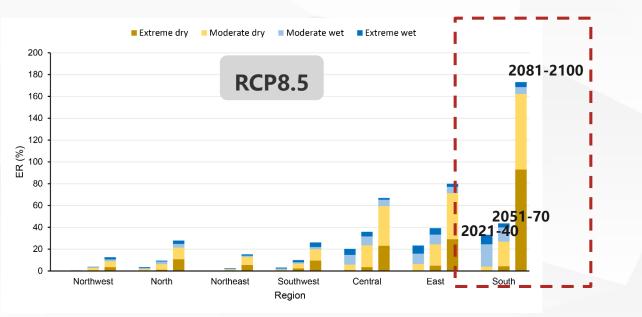

Cities with no risk of dengue virus transmission by 2100 RCP2.6 Scenario: 150 RCP8.5 scenarios: 55

Excess risk of dengue fever attributed to hydrological conditions under different RCP scenarios


RCP 2•6		RC	P 4•5	RC	P 8•5
2021–40	2081–2100	2021–40	2081-2100	2021–40	2081–2100
0.63	0.81	1.55	4.56	1.05	12.56
3.99	6.20	5.54	10.51	3.53	27.93
0.05	0.22	0.05	3.29	0.04	15.34
3.34	1.84	4.84	8.21	3.14	26.18
22.58	22.34	26.43	32.35	20.21	67.14
27.87	27.38	24.57	34.63	23.30	80.18
28.40	37.44	34.16	48.22	33.16	173.62
13.79	15·03	15.21	21.82	13·28	60.77
	2021–40 0.63 3.99 0.05 3.34 22.58 27.87 28.40	2021-402081-21000.630.813.996.200.050.223.341.8422.5822.3427.8727.3828.4037.44	2021-402081-21002021-400.630.811.553.996.205.540.050.220.053.341.844.8422.5822.3426.4327.8727.3824.5728.4037.4434.16	2021-402081-21002021-402081-21000.630.811.554.563.996.205.5410.510.050.220.053.293.341.844.848.2122.5822.3426.4332.3527.8727.3824.5734.6328.4037.4434.1648.22	2021-402081-21002021-402021-400.630.811.554.561.053.996.205.5410.513.530.050.220.053.290.043.341.844.848.213.1422.5822.3426.4332.3520.2127.8727.3824.5734.6323.3028.4037.4434.1648.2233.16

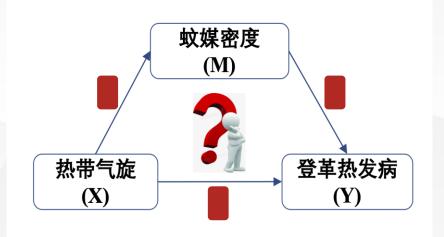
Excess risk of dengue fever attributed to hydrological conditions under different RCP scenarios


	RC	P 2•6	RC	P 4•5	RC	P 8•5
	2021–40	2081–2100	2021–40	2081–2100	2021–40	2081–2100
Northwest	0.63	0.81	1.55	4.56	1.05	12.56
North	3.99	6.20	5.54	10.51	3.53	27.93
Northeast	0.05	0.22	0.05	3.29	0.04	15.34
Southwest	3.34	1.84	4.84	8.21	3.14	26.18
Central	22.58	22.34	26.43	32.35	20.21	67.14
East	27.87	27.38	24.57	34.63	23.30	80.18
South	28.40	37.44	34.16	48·22	33.16	173.62
Overall	13.79	15.03	15.21	21.82	13.28	60.77


Excess risk of dengue fever attributed to hydrological conditions under different RCP scenarios

	RCP 2•6		RCP 4•5		RC	P 8•5
	2021–40	2081–2100	2021–40	2081–2100	2021–40	2081–2100
Northwest	0.63	0.81	1.55	4.56	1.05	12.56
North	3.99	6·20	5.54	10.51	3.53	27.93
Northeast	0.05	Coastal citie	es have an a	verage annual i	ncrease	15.34
Southwest	3.34	in attrib	utable disea	ase risk of over	50%	26.18
Central	22.58	22.34	26.43	32.35	20.21	67.14
East	27.87	27.38	24.57	34.63	23.30	80.18
South	28.40	37.44	34.16	48.22	33·16	173.62
Overall	13.79	15.03	15.21	21.82	13.28	60.77

Cumulative incidence risk of dengue fever attributed to dry and wet conditions under different RCP scenarios


Contribution of annual attributable incidence risk: 2021-40: Equal contribution of dry and wet 2051-70: Drought as the main contributing factor 2081-2100: Drought as the main contributing factor

Under RCP2.6 scenario: moderate hydrological conditions as the main contributing factor RCP8.5 scenario: rapid increase in contribution of extreme hydrological conditions

Study 3: The impact of extreme weather and climate events on the incidence of vector mosquitoes Aedes and dengue fever: A case study of tropical cyclones

Tropical cyclones can affect the incidence of dengue fever. During a tropical cyclone, its energy is released in the form of wind, rainstorm and storm surge, providing suitable temperature and rainfall conditions for mosquito breeding, and may also create conditions for the occurrence and prevalence of dengue fever.

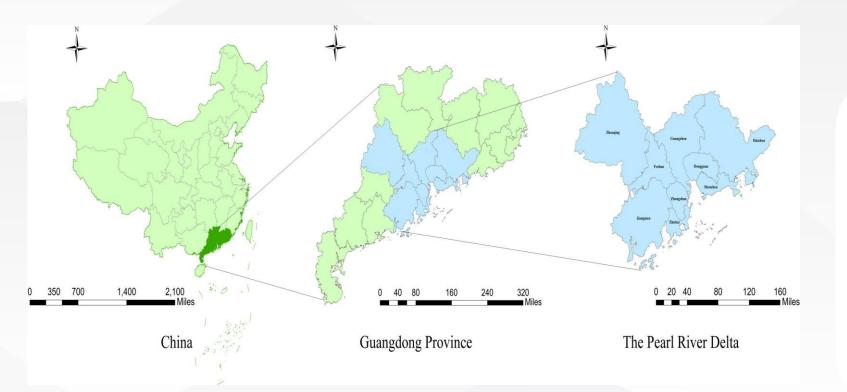
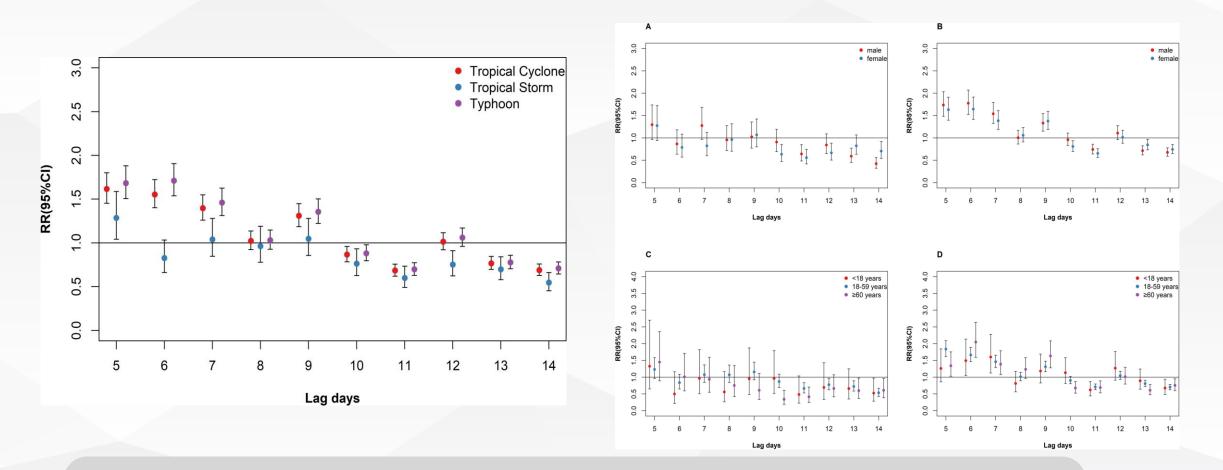



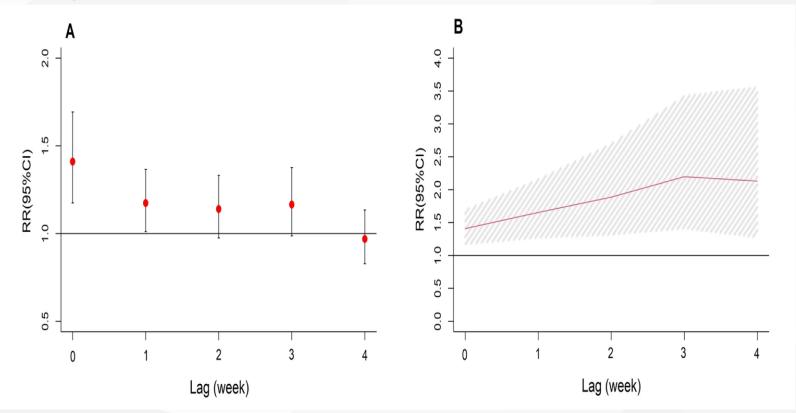
Figure. Location of the study area in China.

- Research location: the Pearl River Delta, China (9 cities in total)
- Research period: 2015 2019 tropical cyclone
 season (June to October)
- Daily incidence data of dengue fever

The association between tropical cyclones and dengue fever in the Pearl River Delta, China during 2013-2018: a time-stratified case-crossover study[J]. PLoS Negl Trop Dis, 2021, 15(9): e0009776.

The impact of tropical cyclones on dengue fever in the the Pearl River Delta: a time stratified case-control study

Tropical cyclones with a 5-9 day lag can increase the risk of dengue fever, with the greatest effect observed on the 5th day lag


(RR=1.62, 95% CI: 1.45-1.80).

Typhoons have a greater impact and longer duration on the incidence of dengue fever than tropical storms. The association between tropical cyclones and dengue fever in the Pearl River Delta, China during

2013-2018: a time-stratified case-crossover study[J]. PLoS Negl Trop Dis, 2021, 15(9): e0009776.

Short term impact of tropical cyclones on dengue fever incidence in Guangzhou - time series analysis

 $log[E(Yt)] = \alpha + cb(TCt, 4, \beta) + ns(WAT, 3) + ns(WCP, 3) + ns(WARH, 3) + ns(time, 3) + ns(woy, 4)$

When the lag is 0
 weeks, the risk of onset
 is highest (RR=1.41,
 95Cl%=1.17-1.69);
 The cumulative effect
 reached its maximum
 within 0-4 weeks
 (RR=2.13, 95% Cl: 1.28 3.56).

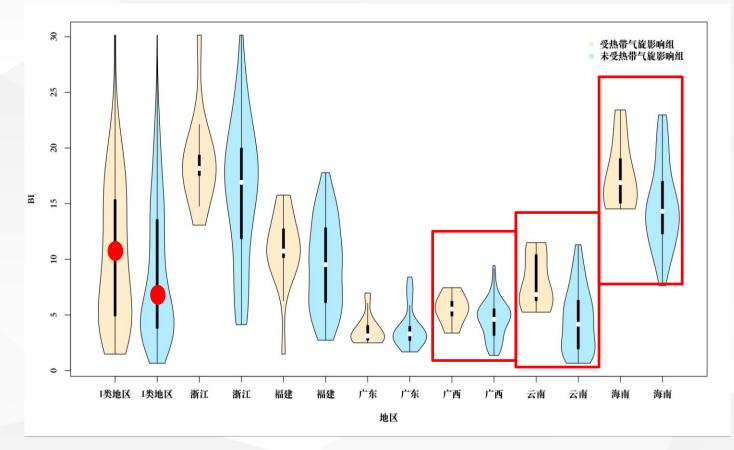
Figure. Lag effects (A) and cumulative effects (B) of tropical cyclones on dengue cases in different lag periods

Short-term effects of tropical cyclones on the incidence of dengue: a time-series study in Guangzhou, China[J]. Parasit Vectors, 2022, 15(1): 358.

	lag0	lag1	lag2	lag3	lag4	lag0–4
Sex						
Male	1.56(1.26,1.94)	* 1.20(1.00,1.44)	1.26(1.05,1.52)*	1.28(1.05,1.55)*	1.04(0.86,1.25)	3.14(1.71,5.77)*
Female	1.24(0.98,1.57)	1.15(0.95,1.38)	1.01(0.83,1.23)	1.05(0.84,1.29)	0.90(0.73,1.09)	1.34(0.70,2.58)
Age	1 2 4 (2 2 2 2 2 2 2)	1 20/2 21 2 22		1 2 4 (2 2 2 2 4 2)		
•	1.34(0.80,2.24)	1.28(0.81,2.02)	1.16(0.73,1.84)	1.34(0.82,2.19)	0.85(0.52,1.37)	2.25(0.54,9.41)
18–59 years	1.40(1.13,1.74)	* 1.05(0.87,1.27)	1.13(0.94,1.36)	1.15(0.95,1.39)	0.90(0.74,1.10)	1.73(0.97,3.07)
≥ 60 years	1.67(1.14,2.44)	* 1.42(1.00,2.01)	1.04(0.74,1.46)	1.43(1.03,2.00)*	0.94(0.65,1.36)	3 .33(1.16,9.55) *

Table. RRs of tropical cyclones on dengue incidence among different subgroups during the study period in Guangzhou, China

Men are the susceptible population, with the maximum effect occurring


at a lag of 0 weeks (RR=1.56, 95% CI: 1.26-1.94).

The population aged 60 and above is susceptible, and the risk of dengue

fever increases with a lag of 0 and 3 weeks.

Short-term effects of tropical cyclones on the incidence of dengue: a time-series study in Guangzhou, China[J]. Parasit Vectors, 2022, 15(1): 358.

The impact of tropical cyclones on the density of Aedes mosquitoes as vectors

The distribution of the Brett index in Class I areas and 6 provinces under and without the influence of tropical cyclones

The Breton index within half a month of being affected by a tropical cyclone is higher than when it is not affected by a tropical cyclone. Guangxi, Yunnan, and Hainan experienced the most significant increase in the Bretu index within half a month of being affected by tropical cyclones.

Study on the Impact of Tropical Cyclones on Dengue Fever and Aedes Mosquito Density [D]. Shandong University, 2022

Limitations and Future Research Prospects

Limitations

- There is a lot of theoretical research, mostly from the perspective of big data, with fewer levels of models
- > Evidence from the site and laboratory is still needed to support it

Prospects

- The construction of interdisciplinary coupling models can better fit the changing trends of socio-economic, ecological and physicochemical environment, health policies, etc. under the background of future climate change, as well as their impact on the trend of dengue fever epidemic
- More laboratory evidence and parameters to explore the relationship between dengue virus vector Aedes mosquitoes individual susceptibility

Related papers

- 1. Projecting future risk of dengue related to hydrometeorological conditions in mainland China under climate change scenarios: a modelling study. Lancet Planet Health. 2023 May; 7(5):e397-e406. doi: 10.1016/S2542-5196(23)00051-7. PMID: 37164516; PMCID: PMC10186180. First District of the Chinese Academy of Sciences, IF=28.75
- 2. The patterns and driving forces of dengue invasions in China. Infect Dis Poverty. 2023 Apr 21; 12 (1): 42. doi: 10.1186/s40249-023-01093-0. Chinese Academy of Sciences Zone 1, IF=10.485
- 3. Association Between Hydrological Conditions and Dengue Fever Incidence in Coastal Southeastern China From 2013 to 2019. JAMA Netw Open. 2023 Jan 3; 6 (1): e2249440. doi: 10.1001/jamanetworkopen.2022.49440. Chinese Academy of Sciences, Zone 1, IF=13.353
- 4. Short-term effects of tropical cyclones on the incidence of dengue: a time-series study in Guangzhou, China. Parasit Vectors. 2022 Oct 6; 15 (1): 358. doi: 10.1186/s13071-022-05486-2. Second District of the Chinese Academy of Sciences, IF=4.047
- 5. The impact of extreme precipitation events in Guangzhou on the incidence of dengue fever in different characteristic populations Journal of Shandong University (Medical Edition), 2021, 59 (12): 151-157
- 6. The impact of tropical cyclones on the density of Aedes albopictus and the incidence rate of dengue fever in Zhejiang Province from 2015 to 2020 Journal of Shandong University (Medical Edition), 2021, 59 (12): 143-150
- The association between tropical cyclones and dengue fever in the Pearl River Delta, China during 2013-2018: A time-stratified case-crossover study. PLoS Negl Trop Dis. 2021 Sep 9; 15 (9): e0009776. doi: 10.1371/ournal.pntd.0009776. Second District of the Chinese Academy of...

acknowledgments

- Professor Liu Qiyong
- Professor Zhao Qi
- Dr. Wang Haitao
- Dr. Li Chuanxi
- Zhao Zhe (PhD student)
- Yan Yu (PhD student)

Thank You!