

Altitude and anemia prevalence A socio-geographic analysis from 3 districts of Nepal

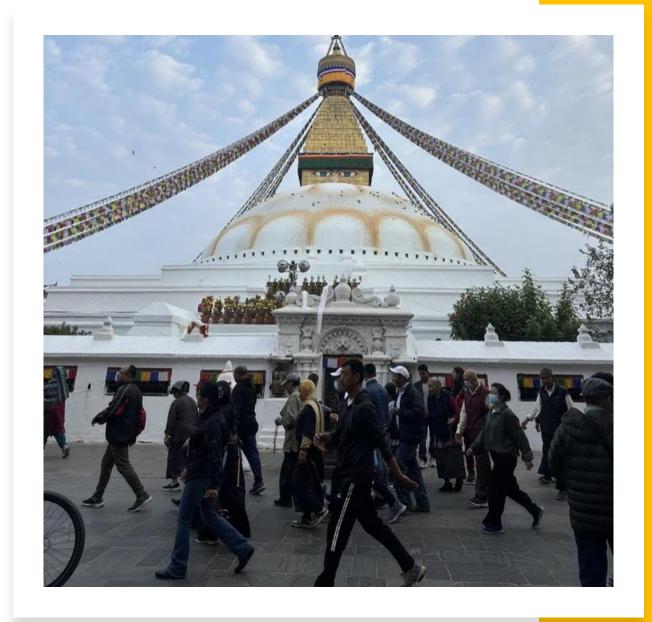
Leela Khanal MSW, MRH; Paribesh Bidari MBA; Bibek Lamicchane MPH; Rabin Dithal MPH

In collaboration with:

Allison Judkins MD, University of Utah

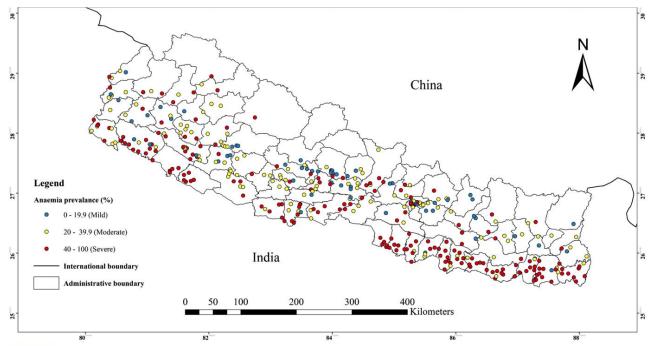
Spencer Crocker MS

Bernhard Fassl MD – Northeast Ohio Medical University



Bio Summary

Leela Khanal is a public health expert from Kathmandu, Nepal, with over 30 years of experience in social behavior change, risk communication, and community engagement in maternal, newborn, and adolescent health. She has worked with organizations like Save the Children Norway, UNICEF Nepal, and JSI, collaborating closely with the Government of Nepal on key initiatives such as the Birth Preparedness Tools and use of Misoprostol for postpartum hemorrhage. She also led the Chlorhexidine 'Navi' Care Program, helping scale newborn cord care nationally and internationally. Leela holds Master's degrees in Public Health and Sociology/Anthropology and currently consults for JSI, GEI and others.


Disclosure Statement

No personal conflicts of interest or relevant financial relationships to report.

ANEMIA in Nepal

- Anemia affects over 40% of WRA in Nepal (BMJ 2021)
- Distribution of anemia is not uniform but highly dependent on the region
- Generally, the Terai region has the highest prevalence
- Effect on physical and cognitive development, economic productivity and maternalneonatal health outcomes

Figure 2 Study area map and observed anaemia prevalence among women of reproductive age for the NDHS survey clusters. NDHS, Nepal Demographic and Health Survey.

2024 - WHO diagnostic standards for anemia

	Haemoglobin concentration (g/L)				
Population	No anaemia	Mild anaemia	Moderate anaemia	Severe anaemia	
Children, 6–23 months	≥105	95–104	70-94	<70	
Children, 24–59 months	≥110	100-109	70–99	<70	
Children, 5–11 years	≥115	110-114	80-109	<80	
Children, 12–14 years, nonpregnant girls	≥120	110-119	80–109	<80	
Children, 12–14 years, boys	≥120	110-119	80-109	<80	
Adults, 15–65 years, nonpregnant women	≥120	110-119	80-109	<80	
Adults, 15–65, years men	≥130	110–129	80-109	<80	
Pregnancy					
First trimester	≥110	100-109	70-99	<70	
Second trimester	≥105	95-104	70-94	<70	
Third trimester	≥110	100-109	70–99	<70	

- Initially developed in 1968
- Revised in 2024
- Normative values and cutoffs apply to populations that live
 <1,000m altitude

Adjustments of measured hemoglobin values are recommended for higher altitude residents

Guideline on haemoglobin cutoffs to define anaemia in individuals and populations. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO.

Background: Hemoglobin values and altitude correction

Table 4. Adjustments to haemoglobin concentration (g/L) in 500 m increments in elevation^a

Elevation range (metres above sea level)	Adjustments in haemoglobin concentration (g/L)b	
1-499	0	
500-999	4	
1000-1499	8	
1500-1999	11	
2000-2499	14	
2500-2999	18	
3000-3499	21	
3500-3999	25	
4000-4499	29	
4500-4999	33	

^a Adjustments are the amount subtracted from an individual's observed haemoglobin level or added to the haemoglobin cutoff defining anaemia (in g/L).

- Exposure to high altitude
 >1,000m stimulates production
 of red blood cells
- Prolonged exposure (weeks) leads to an increase in RBC and hemoglobin
- High altitude residents have higher hemoglobin levels
- Currently, altitude correction is rarely applied. May play a significant role in Nepal

Guideline on haemoglobin cutoffs to define anaemia in individuals and populations. Geneva: World Health Organization; 2024. Licence: CC BY-NC-SA 3.0 IGO.

b Proposed adjustments for all population groups based on the equation: Haemoglobin adjustment (g/L) = (0.0056384 x elevation) + (0.000003 x elevation²)

Aim and Objectives

AIM

Investigate the association between geography altitude and social/ethnic factors on rates and severity of anemia

OBJECTIVES

- Describe rates of anemia in different populations in 3 districts of Nepal
- 2. Investigate the impact of applying the WHO altitude correction for measured HgB levels on anemia diagnosis and severity

Methods Data collection

HEALTH FAIRS – SCREENING EVENT

- Several locations within the municipality (areas of high population density)
- Conducted by local healthpost staff in coordination with municipality and local NGOs
 - Humla: Sarkeghat RM
 - Nuwakot: BelKotghadi M
 - Solukhumbhu: Pasang Lhamu RM

TARGET POPULATION

- Original target population: WRA
 aged 15-49 years
- Actual population screened: all ages and genders

DATA ELEMENTS recorded

- Very limited due to volume
- Basic demographic information
- Pregnancy status
- HgB value (Diaspect portable HgB measurement device, CE and FDA approved)

APPROVALS Approvals – health fair

- SWC approval
- Municipality approval

Approval analysis of data NHRC

Methods – Data elements

DATA USED FOR ANALYSIS

- Abstracted medical record data (paper records) created during health screening events
- Altitude data added during analysis based on residence

MEASURED HGB AND ALTITUDE CORRECTION APPLIED

 HgB value adjustment according to WHO correction table

Table 4. Adjustments to haemoglobin concentration (g/L) in 500 m increments in elevation

Elevation range (metres above sea level)	Adjustments in haemoglobin concentration (g/L) ^b		
1-499	0		
500-999	4		
1000-1499	8		
1500-1999	11		
2000–2499	14		
2500–2999	18		
3000-3499	21		
3500–3999	25		
4000-4499	29		
4500-4999	33		

Adjustments are the amount subtracted from an individual's observed haemoglobin level or added to the haemoglobin cutoff defining anaemia (in g/L).

ANALYSIS

Descriptive Statistics: Summary statistics were computed for hemoglobin levels, altitude, and demographic factors

Fisher Exact test was conducted to determine significance when examining the relationship between altitude and hemoglobin levels

GLOBAL ENVIROTECH INITIATIVE ASIA

- Technical advisor for municipalities and local NGOs
- Focus on perinatal care, MCH

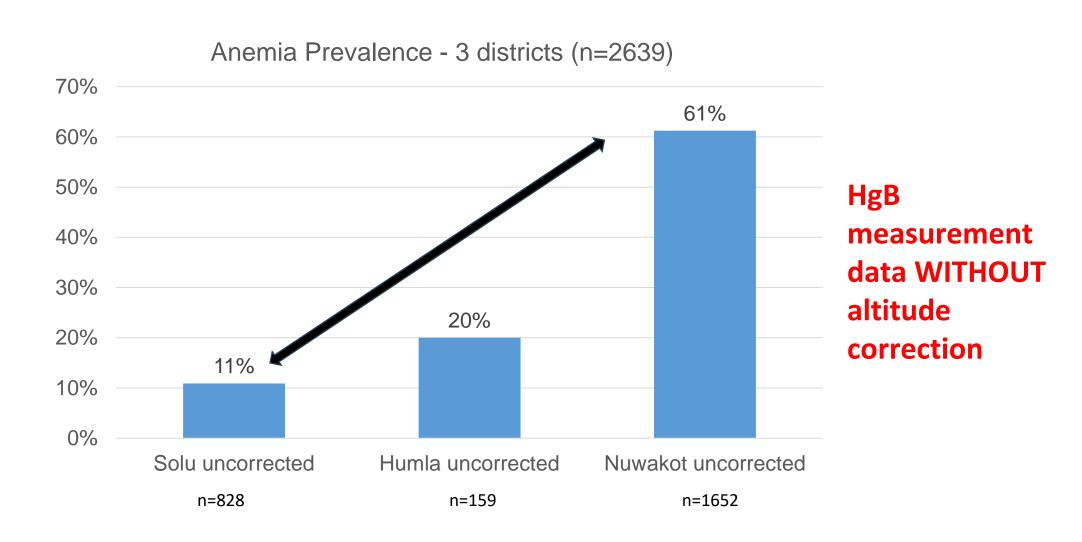
b Proposed adjustments for all population groups based on the equation: Haemoglobin adjustment (g/L) = (0.0056384 x elevation) + (0.000003 x elevation

RESULTS: Patient population and characteristics

Population screened: n=2647

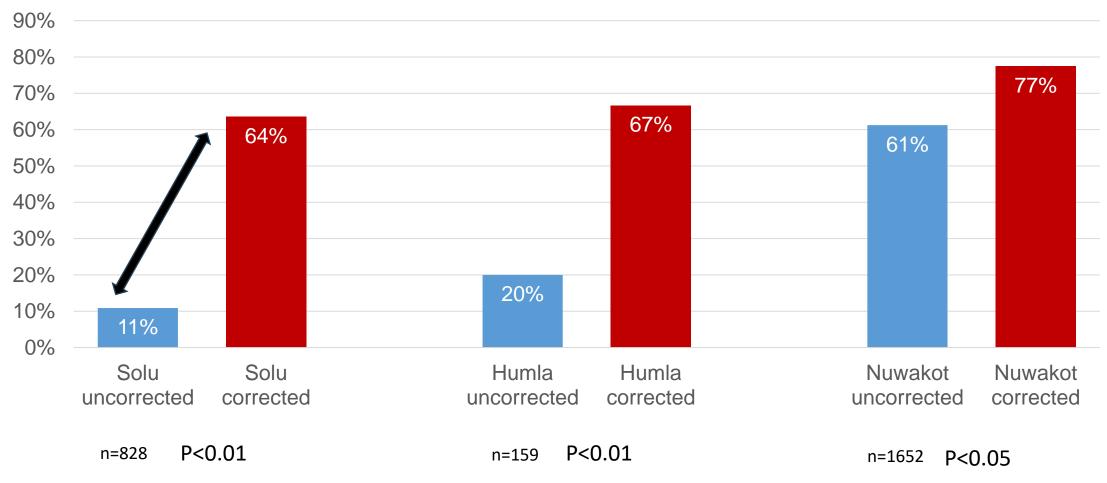
Selected for analysis: n=2639

(complete dataset)

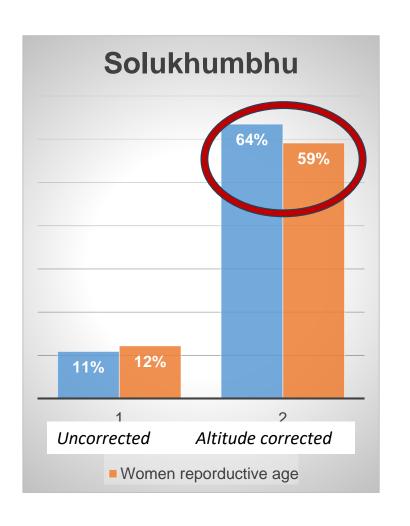

ALTITUDE OF RESIDENCE (M)	PATIENTS All districts
3500 - 4,000	532
3,000-3,500	297
2,500-3,000	n/a
2,000-2,500	n/a
1,500-2,000	1033
1000-1,500	677
<1,000	127

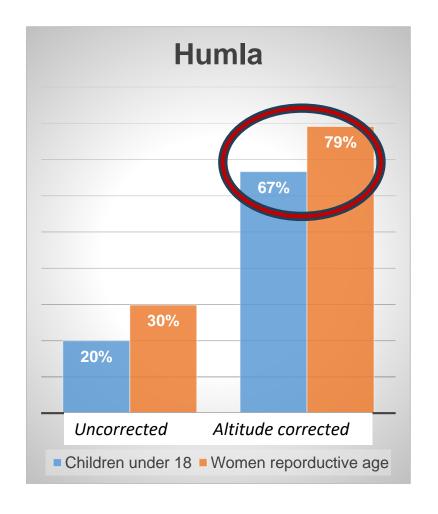
DEMOGRAPHICS	Humla (n)	Nuwakot (n)	Solukhumbhu (n)
Children under 5 male	18	53	27
Children under 5 female	5	64	34
5-10 years male	3	137	121
5-10 years female	2	208	103
10-18 years male	0	145	127
10-18 years female	6	394	145
15-49 y females WRA	134	466	164
All male	18	516	367
All female	141	1042	410
TOTAL	159	1652	828

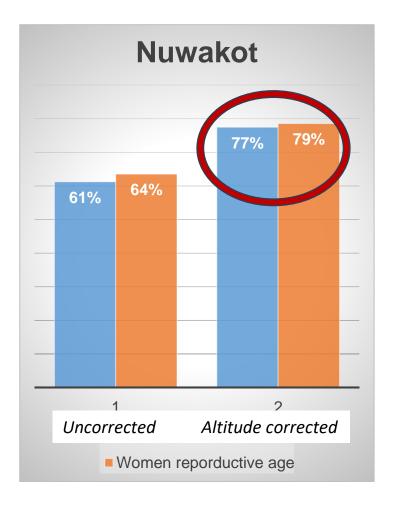
CASTE	Humla	Nuwakot	Solukhumbhu
Janjati	25 (16%)	565 (33.61%)	763 (92%)
Tamang	0	346 (20.5%)	37 (4.5%)
Sherpa	0	0	359(43%)

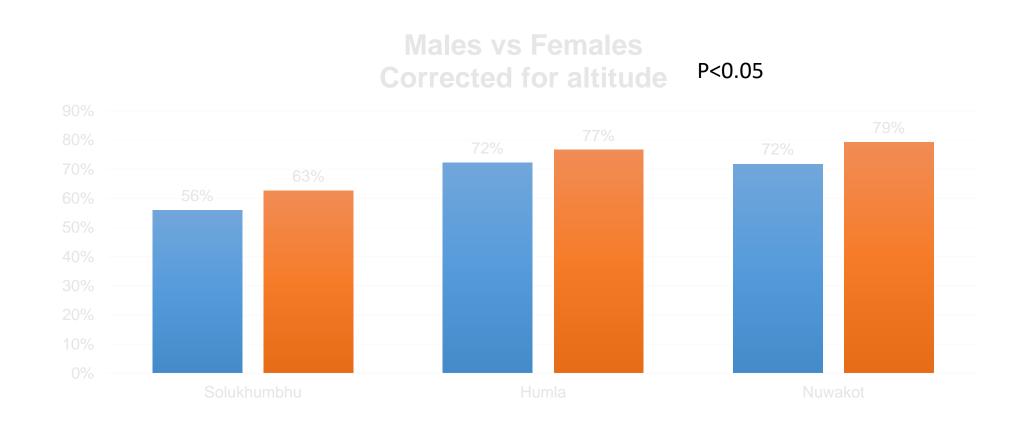

Rates of Anemia differ significantly between districts

All ages and genders

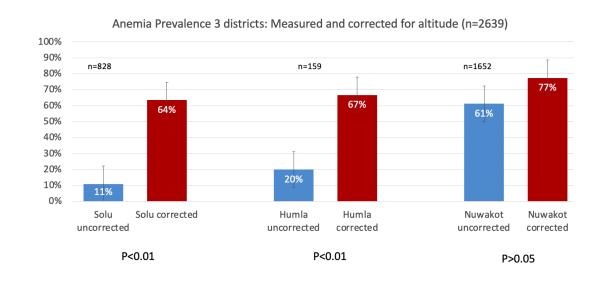



Altitude correction applied


Anemia Prevalence 3 districts: Measured and corrected for altitude (n=2639)

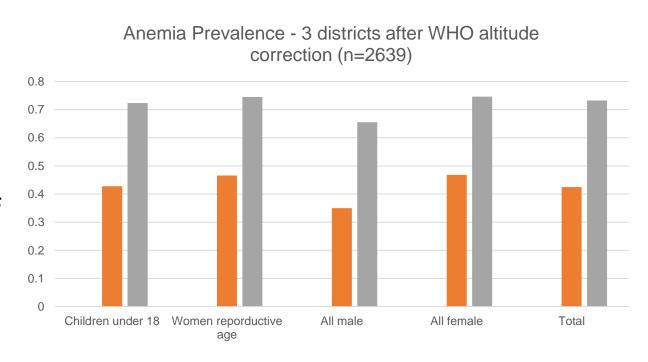

Children under 18 & Women of Reproductive Age

Rates of Anemia: Males vs. Females



Discussion

ALTITUDE CORRECTION HAS A HUGE IMPACT ON THE DIAGNOSIS and MANAGEMENT OF ANEMIA


Are we under-diagnosing anemia because we do not take altitude into account?

- Many community based anemia initiatives currently do not altitude adjust measures HgB levels to make diagnostic and treatment decisions
- This aligns with findings by Cohen & Haas (1999), who found that without WHO altitude corrections, there is an underestimation of anemia in high-altitude pregnancy cases

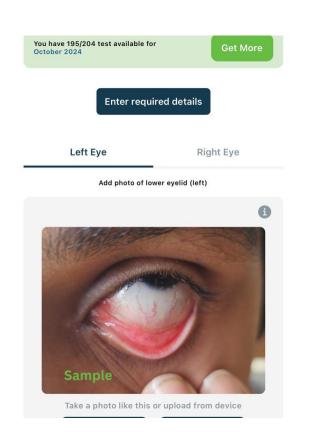
Discussion: Anemia affects the entire family

- Traditional focus on WRA and pregnancy
- Anemia also affects also males in target communities
- If service is available, high demand of testing irrespective of gender

Next steps and future considerations

Field testing of non-invasive portable point of care HgB measurement solutions

- Community based
- Serial testing


Explore culturally and medically feasible effective ways of iron supplementation

Target entire family

Investigate causes of anemia

- Lack of information of body iron stores
- Hemolytic diseases

Limitations

- Not designed as a research study a priori
- Only basic demographic variables
- Convenience sampling: unequal distribution of patients included between districts
- Not all places of residence where patients are coming from have a known and recorded altitude.
 - We used the altitude of the testing site as reference
 - Only small effect on overall results
- No social and other qualitative information available

Thank you

